Химическое равновесие

Для определения величины ΔG в условиях, отличных от стандартных, используют уравнение зависимости изобарно-изотермического потенциала от концентрации и температуры.

Используя соотношения (4.1) и (4.2), получаем:

ΔG = ΔU + PΔV – TΔS

(4.3)

Рассмотрим вместо небольших, но конечных изменений (ΔG, ΔH, ΔS) бесконечно малые изменения всех параметров, входящих в уравнение (4.3). Тогда оно приобретает вид:

dG  = dU + PdV + VdP – TdS – SdT.

(4.4)

Подставив в него dU = δQ – δA, получим:

dG  = δQ – δA + PdV + VdP – TdS – SdT.

(4.5)

Если реакция протекает при постоянной температуре (SdT = 0) и обратимо (ΔQ = TdS), а единственной совершаемой в ходе реакции работой является работа расширения (δА = PdV), то в правой части (4.5) все члены, кроме VdP, взаимно сокращаются или равны нулю. Тогда получаем:

dG  = VdP.

Для одного моля идеального газа V = RT / P и, следовательно,

dG  = RT dP / P = RT d(lnP)

Интегрируя, получаем

(4.6)

Это уравнение позволяет, зная молярную энергию Гиббса идеального газа G 1 при парциальном давлении P 1, вычислить молярную энергию Гиббса G 2 при парциальном давлении P 2. Хотя уравнение 4.6 выведено для обратимой реакции, оно в равной мере применимо и к необратимым процессам, поскольку G является функцией состояния, и ее изменение не зависят от способа перехода из состояния 1 в состояние 2. Допустив, что состояние 1 является стандартным, а состояние 2 произвольным, уравнение (4.6) можно записать в виде:

(4.7)

где – стандартный изобарно-изотермический потенциал вещества j; – его активная концентрация (активность).

Для идеальных растворов активная концентрация определяется как отношение концентрации этого вещества при заданных условиях к его концентрации в стандартном состоянии a = C/C °. Вещества в стандартном состоянии имеют a = 1.

В соответствии с (4.7) энергия Гиббса произвольной химической реакции

a А + bВ = lL + mМ

равна:

(4.8)

При достижении равновесия (ΔG = 0) уравнение (4.8) принимает вид

где     – равновесные значения активных концентраций.

Выражение под знаком логарифма, представляющее собой отношение произведения равновесных активностей продуктов к произведению активностей исходных веществ в степенях их стехиометрических коэффициентов, называется константой равновесия :

(4.9)

Модель 4.12. Химическое равновесие

Подставив (4.9) в (4.8), получим уравнение, носящее название изотермы Вант-Гоффа :

(4.10)

При определенных условиях активности реагентов могут быть заменены концентрациями или парциальными давлениями. В этих случаях константа равновесия, выраженная через равновесные концентрации K c или через парциальные давления K р, принимает вид

(4.11)

(4.12)

Уравнения (4.11) и (4.12) представляют собой варианты закона действующих масс (ЗДМ) для обратимых реакций в состоянии равновесия. При постоянной температуре отношение равновесных концентраций (парциальных давлений) конечных продуктов к равновесным концентрациям (парциальным давлениям) исходных реагентов, возведенных соответственно в степени, равные их стехиометрическим коэффициентам, величина постоянная (К. Гульдберг, П. Вааге, 1867 г.).

Для газообразных веществ K p и K c связаны соотношением K p = (RT) ΔnK c, где Δn – разность числа молей начальных и конечных газообразных реагентов.

Константа равновесия определяется при известных равновесных концентрациях реагирующих веществ или по известной ΔG ° химической реакции.