ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ СИЛЫ ПО ФОРМУЛЕ ЭЙЛЕРА
 
Для шарнирно закрепленного, центрально-сжатого стержня постоянного сечения (рис.8.2). I Формула Эйлера имеет вид:
где Е - модуль продольной упругости материала стержня;
Jmin - минимальный момент инерции поперечного сечения стержня.
Для стержней с другими видами закрепления формулу Эйлера записывают в виде:
где - приведенная длина стержня;
- коэффициент приведения длины.
Выражение "приведенная длина" означает, что в формуле Эйлера с помощью коэффициента все случаи закрепления концов стержня можно привести к основному, шарнирному закреплению.
Коэффициент приведения длины иногда можно оценить по числу полуволн n, по которым выпучится стержень, теряя устойчивость, а именно, можно принять
На рис. 8.2 показаны наиболее часто встречающиеся на практике случаи закрепления концов стержня и соответствующие им значения коэффициента
Рис. 8.2
Формула Эйлера применима только о пределах выполнения закона Гука, когда критическое напряжение не превышает предел пропорциональности материала стержня, так как эта формула была введена с помощью зависимости
в свое время полученной на основании закона Гука.
Применимость формулы Эйлера можно определить, оценив гибкость стержня и сравнив эту гибкость с ее предельным значением. Гибкость стержня равна
где
- минимальный радиус инерции (геометрическая характеристика сечения);
- минимальный момент инерции площади сечения стержня.
Значение предельной гибкости получается из условия
Предельная гибкость равна
Так, для малоуглеродистой стали, если принять Е = 2x105 МПа,
Для повышения несущей способности конструкций в них стремятся использовать стержни возможно меньшей гибкости. Так что расчет реальных конструкций с гибкостью практически маловероятен. Будем считать
верхней границей значений гибкости реальных стержней.
Следовательно, формула Эйлера для определения критического значения сжимающей силы в виде
применима в случае, если гибкость стержня находится в пределах
(кривая СД на рис. 8.3)
Рис. 8.3
Для малоуглеродистой стали этот диапазон равен