Энтропия

Изменение энтальпии системы не может служить единственным критерием самопроизвольного осуществления химической реакции, поскольку многие эндотермические процессы протекают самопроизвольно. Иллюстрацией этого служит растворение некоторых солей (например, NH 4NO 3) в воде, сопровождающееся заметным охлаждением раствора. Необходимо учитывать еще один фактор, определяющий способность самопроизвольно переходить из более упорядоченного к менее упорядоченному (более хаотичному) состоянию.

Энтропия (S) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики).

Модель 4.8. Энтропия и фазовые переходы.

Л. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W. Поскольку число частиц в системе велико (число Авогадро N A = 6,02∙10 23), то энтропия пропорциональна натуральному логарифму термодинамической вероятности состояния системы W:

S  = R · ln W

Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль –1∙K –1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T. Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔS пл = ΔH пл/T пл Для химической реакции изменение энтропии аналогично изменению энтальпии

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q/T (приведенное тепло).

Здесь ΔS ° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. В табл. 4.1 приведены стандартные энтропии S ° некоторых веществ.

Соединение


(Дж∙моль –1∙K –1)

Соединение


(Дж∙моль –1∙K –1)

C (т)алмаз

2,37

NO (г)

210

C (т)графит

5,74

NO 2(г)

240

H 2(г)

131

N 2O 5(г)

342

D 2(г)

145

H 2O (г)

189

O (г)

161

H 2O (ж)

70

O 2(г)

205

D 2O (ж)

79

O 2(ж)

84

CH 4(г)

186

O 2(т)

42

C 2H 6(г)

229

O 3(г)

237

н-C 4H 10(г)

310

 

 

изо-C 4H 10(г)

294

Таблица 4.1.

Стандартные энтропии некоторых веществ.

Из табл. 4.1 следует, что энтропия зависит от:

  • Агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).
  • Изотопного состава (H 2O и D 2O).
  • Молекулярной массы однотипных соединений (CH 4, C 2H 6, н-C 4H 10).
  • Строения молекулы (н-C 4H 10, изо-C 4H 10).
  • Кристаллической структуры (аллотропии) – алмаз, графит.

Наконец, рис. 4.3 иллюстрирует зависимость энтропии от температуры.

Рисунок 4.3.

Зависимость энтропии от температуры для свинца: Δ S пл  = 8 Дж·моль –1·К –1; T пл  = 600,5 К; Δ S кип  = 88 Дж·моль –1·К –1; T кип  = 2013 К.

Следовательно, стремление системы к беспорядку проявляется тем больше, чем выше температура. Произведение изменения энтропии системы на температуру TΔS количественно оценивает эту тендецию и называется энтропийным фактором.

Модель 4.9. Реальный газ.