Определение. Разность F (b)– F (a) называется интегралом от функции f (x) на отрезке [ a ; b ] и обозначается так: = F (b)– F (a) – формула Ньютона-Лейбница.

Геометрический смысл интеграла.

Площадь криволинейной трапеции, ограниченной графиком непрерывной положительной на промежутке [ a ; b ] функции f (x), осью Ох и прямыми х=а и х= b:

.

Вычисление площадей с помощью интеграла.

1.Площадь фигуры, ограниченной графиком непрерывной отрицательной на промежутке [ a ; b ] функции f (x), осью Ох и прямыми х=а и х= b :

2.Площадь фигуры, ограниченной графиками непрерывных функций f (x), и прямыми х=а, х= b :

3.Площадь фигуры, ограниченной графиками непрерывных функций f (x) и :

4.Площадь фигуры, ограниченной графиками непрерывных функций f (x), и осью Ох:

Рекомендации к теме

Прежде чем начать вычислять площадь фигуры, ограниченной заданными линиями, постарайтесь изобразить эту фигуру в системе координат. Это существенно облегчит решение задачи.

Изучение теоретических материалов по данной теме дает Вам возможность овладеть понятиями первообразной и интеграла, усвоить связь между ними, овладеть простейшей техникой интегрального исчисления, научится применять интеграл к вычислению площадей фигур, ограниченных графиками функций.

Примеры.

1. Вычислить интеграл

Решение:

Ответ: 0.

 

2. Найти площадь фигуры, ограниченной линиями

a) f( x ) = 2 х х 2 и осью абсцисс

Решение: График функции  f(x) = 2x - х2 парабола. Вершина: (1; 1).

Ответ:

б)

Решение: График функции – прямая.

x 0 4
y 0 2

Функция является обратной функции y = х 2 на промежутке [0; +∞).

x 0 1 4
y 0 1 2

Пределы интегрирования указаны в таблицах значений функций.

Ответ:( кв . ед .).