рис. 41
Точка а не лежит в плоскости , проведём через неё прямую а, перпендикулярную к (АН).

Отрезок АН называется перпендикуляром, проведённым из А к , точка Н - основание перпендикуляра. М - точка плоскости , отличная от Н. Отрезок АМ - наклонная к плоскости , М - её основание, отрезок НМ - проекция наклонной на плоскость .

Перпендикуляр АН меньше наклонной АМ.

Длина АН называется расстоянием от точки А до плоскости .

Замечания.

  1. Если прямая параллельна плоскости, то расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.
  2. Если две плоскости параллельны, то расстояние от произвольной точки одной из плоскостей до другой называется расстоянием между данными плоскостями.
  3. Если две прямые скрещиваются, то расстояние между одной из этих прямых и плоскостью, проведённой через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми.

рис. 42
Теорема о трёх перпендикулярах. Прямая, проведённая в плоскости через основание наклонной перпендикулярно к её проекции, перпендикулярна и к самой наклонной.

Обратная теорема. Прямая, проведённая в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции.

Проекцией точки на плоскость называется основание перпендикуляра, проведенного из этой точки к плоскости, если точка не лежит в плоскости, и сама точка, если точка лежит в плоскости.

Проекцией прямой на плоскость, не перпендикулярную к этой прямой, является прямая.


рис. 43
Определение. Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и её проекцией на плоскость.


Рекомендации к теме

Материал темы обобщает и систематизирует известные Вам из планиметрии сведения о перпендикулярности прямых. Изучение теорем о взаимосвязи параллельности и перпендикулярности прямых и плоскостей в пространстве, а также материал о перпендикуляре и наклонных целесообразно сочетать с систематическим повторением соответствующего материала из планиметрии.

Решения практически всех задач на вычисление сводятся к применению теоремы Пифагора и следствий из нее. Во многих задачах возможность применения теоремы Пифагора или следствий из нее обосновывается теоремой о трех перпендикулярах или свойствами параллельности и перпендикулярности плоскостей.