Теория:

Термины рациональное число, иррациональное число происходят от латинского слова ratio — разум
(буквальный перевод: «рациональное число — разумное число», «иррациональное число — неразумное число»; впрочем, так говорят и в реальной жизни: «он поступил рационально» — это значит, что он поступил разумно; «так действовать нерационально» — это значит, что так действовать неразумно).

Иррациональным числом называют бесконечную десятичную непериодическую дробь.

Если натуральное число \(n\) не является точным квадратом, т. е. nk2, где k, то  n — иррациональное число.

Пример:

5=2,23606798...11=3,31662479...

Иррациональные числа встречаются не только при извлечении квадратного корня, но и во многих других случаях, в чем вы не раз убедитесь в старших классах.

Если длину любой окружности разделить на её диаметр, то в частном получится иррациональное число \(3,141592...\). Для этого числа в математике введено специальное обозначение π (буква греческого алфавита «пи»; версия происхождения этого понятия такова: с буквы  πначинается греческое слово периферия — окружность). Иррациональность числа π была доказана в \(1766\) г. немецким математиком И. Ламбертом.

Итак,

1. Любая арифметическая операция над рациональными числами (кроме деления на \(0\)) приводит в результате к рациональному числу.

2. Арифметическая операция над иррациональными числами может привести в результате как к рациональному, так и к иррациональному числу.

3. Если в арифметической операции участвуют рациональное и иррациональное числа, то в результате получится иррациональное число (кроме умножения и деления на \(0\)).

4. Поскольку операция извлечения квадратного и кубического корня из положительного числа часто приводит к иррациональным числам, условились алгебраическое выражение, в котором присутствует операция извлечения квадратного и кубического корня из переменной, называть иррациональным выражением.