Теория:

Соберем цепь, изображенную на рисунке. Силу тока в цепи измеряют амперметром, напряжение — вольтметром. Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.
 
pic8_74.jpg
 
В цепь источника тока по очереди будем включать различные проводники, например, никелиновые проволоки одинаковой толщины, но разной длины. Выполнив указанные опыты, мы установим, что из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление.
В следующем эксперименте по очереди будем включать никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения). Установим, что из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше.
В третьем эксперименте по очереди будем включать никелиновую и нихромовую проволоки одинаковой длины и толщины. Установим, что из никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил, что
Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.
 
Обрати внимание!
Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристаллической решетки проводника. Из-за различия в строении кристаллической решетки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга.  Для характеристики материала вводят величину, которую называют удельным сопротивлением.
Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной \(1\) м, площадью поперечного сечения \(1\) м².
Введём буквенные обозначения: \(ρ\) — удельное сопротивление проводника, \(l\) — длина проводника, \(S\) — площадь его поперечного сечения. Тогда сопротивление проводника \(R\) выразится формулой:

R=ριS
 
Из этой формулы можно выразить и другие величины:
 
ι=RSρ, S=ριR, ρ=RSι.
 
Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является \(1\) Ом, единицей площади поперечного сечения — \(1 \)м², а единицей длины — \(1 \)м, то единицей удельного сопротивления будет:
 
1 Ом 1м21 м=1 Ом 1 м, т.е. Омм.
 
Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметрах, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:
 
1 Ом 1мм21 м, т.е. Оммм2м.
 
В таблице  приведены значения удельных сопротивлений некоторых веществ при \(20\) °С.
 
Безымянный.png
 
Обрати внимание!
Удельное сопротивление с изменением температуры меняется.
Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.

 
Обрати внимание!
Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.
При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы, сплав нихром имеет удельное сопротивление почти в \(40\) раз большее, чем алюминий.
Обрати внимание!
Стекло и дерево имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток и являются изоляторами.
 
На практике часто приходится менять силу тока в цепи, делая её то больше, то меньше. Так, изменяя силу тока в динамике радиоприёмника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.
Во многих случаях
для регулирования силы тока в цепи применяют специальные приборы — реостаты.
Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включенного в цепь участка АС. При этом будет меняться сопротивление цепи, а следовательно, и сила тока в ней, это покажет амперметр.

key.gif
 
Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением. Один из реостатов (ползунковый реостат) изображен на рисунке.
 
Reostat.gif
 
В этом реостате никелиновая проволока намотана на керамический цилиндр. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки ее изолированы друг от друга. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки. От трения ползунка о витки слой окалины под его контактами стирается, и электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим \(1\). С помощью этого зажима и зажима \(2\), соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь.
Условное обозначение реостата в схемах показано на рисунке:

Image399.jpg
 
Каждый реостат рассчитан на определенное сопротивление и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате.
 
Обрати внимание!
Реостат нельзя полностью выводить, так как сопротивление его при этом становится равным нулю, и если в цепи нет других приёмников тока, то сила тока может оказаться очень большой и амперметр испортится.
На рисунке изображён реостат, с помощью которого можно менять сопротивление в цепи не плавно, а ступенями — скачками, т.к. каждая спираль реостата имеет определенное сопротивление.
 
pic8_77.jpg
Источники:
Перышкин А. В Физика. 8 класс // ДРОФА, 2013
http://class-fizika.narod.ru/8_31.htm
http://electricalschool.info/main/osnovy/394-jelektricheskojj-soprotivlenie.html
http://xn--h1adlho.xn--g1ababalj7azb.xn--p1ai/%D1%83%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5-%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5/
http://xn--h1adlho.xn--g1ababalj7azb.xn--p1ai/%D1%83%D1%80%D0%BE%D0%BA-38-%D1%80%D0%B5%D0%BE%D1%81%D1%82%D0%B0%D1%82%D1%8B/
http://mugo.narod.ru/Fiziks/15.html