Условие задания:

3,5 Б.
Прямая \(a\) перпендикулярна плоскости α и прямой \(g\), которая не находится в плоскости α.
Докажи, что прямая \(g\) параллельна плоскости α.
 
 
             \(a\)                                                                                        \(g\)
Plakne_p_taisne_09.png
 
1. Согласно данной информации, если прямая не находится в плоскости, она может или быть плоскости, или  плоскость.
 
2. Допустим, что прямая \(g\) не , а  плоскость α.
 
3. Если прямая \(a\) по данной информации перпендикулярна плоскости α, то она  каждой прямой в этой плоскости, в том числе и прямой, которая проведена через точки, в которых плоскость пересекает прямые \(a\) и \(g\).
 
4. Мы имеем ситуацию, когда через одну точку к прямой \(a\) проведены две  прямые.
 
5. Это противоречие, из чего следует, что прямая \(g\)  плоскости α, что и требовалось доказать.

Для того чтобы решать задания, необходимо зарегистрироваться.

Быстрая регистрация: