Теория:

В прямоугольном треугольнике тригонометрические функции используются для вычисления сторон и острых углов треугольника.
 
zīm.JPG
 
sinα=противолежащий катетгипотенузаsinα=accosα=прилежащий катетгипотенузаcosα=bctgα=противолежащий катетприлежащий катетtgα=ab
Как выбрать правильную функцию?
Если используются только катеты, применяется tg.
 
Если используется гипотенуза (дана или надо вычислить), то применяются sin или cos.
 
Если используется противолежащий катет (дан или надо вычислить), то применяется sin.
 
Если используется прилежащий катет, то применяется cos.
 
Если в треугольнике даны оба острых угла, лучше на рисунке отметить только один угол, чтобы однозначно понять, где прилежащий и где противолежащий катет.
 
Гипотенуза всегда в знаменателе.
Значения тригонометрических функций (которые нужно знать наизусть)
 
 
\(30\)°\(45\)°
\(60\)°
\(sin\)α\(\)122232
\(cos\)α322212
\(tg\)α\(\)33\(1 \)3
 
 
 
 
 
 
 
 
 
 
 
Величины остальных углов можно найти в таблице или вычислить с помощью калькулятора.
 
Пример:
2.jpg
Дано: \(AB =\)\(6\)\(см\), A=60°
Вычислить: \(AC\)
Искомый отрезок гипотенуза, дан угол и прилежащий катет, поэтому будем использовать \(cos\).
 
cosA=ABACAC=ABcosA=6:12=12 см
 
Использование свойства прямоугольного треугольника:
 
taisnlenka trijsturis.JPG
 
Катет прямоугольного треугольника, лежащий против угла в \(30\)°, равен половине гипотенузы.
 
Катет, лежащий против угла в \(60\)°, равен произведению меньшего катета на 3.
 
reg trijst apr.jpg
 
Данное соотношение удобно использовать для нахождения высоты равностороннего треугольника.
 
Угол равностороннего  треугольника равен \(60\)°, и биссектриса делит этот угол пополам.
 
sešstūris ar lenkiem.JPG
 
В правильном шестиугольнике большая диагональ, меньшая диагональ и сторона шестиугольника образуют  прямоугольный треугольник, один из углов которого равен \(30\)°.