Теория:

Каждый знает, что дроби бывают обыкновенные и десятичные. Обыкновенная дробь представляет собой отношение целого числа к натуральному. Поэтому ее перевод в другую систему счисления трудности не представляет: надо отдельно перевести в новую систему счисления числитель и знаменатель, затем записать их отношение. Запись числа десятичной дробью — это распространение позиционного принципа вправо от разряда единиц. Вспомните: при переходе на один разряд влево «вклад» цифры увеличивается в \(10\) раз, а при переходе на один разряд вправо уменьшается в \(10\) раз. Так что запись \(1,38054\) обозначает число: 1100+3101+8102+0103+5104+4105.
Легко понять, что и здесь вместо числа \(10\) можно использовать любое другое натуральное число \(b\), большее \(1\). Скажем, 1,38054b=1b0+3b1+8b2+0b3+5b4+4b5.
По аналогии с десятичными дробями будем называть такую запись дробного числа b-ичной дробью. Так же как и для целых чисел, каждая цифра, используемая в записи b-ичной дроби, должна быть меньше \(b\). Как же переводить десятичную дробь в b-ичную? Для того что-бы найти алгоритм, запишем b-ичную дробь c=0,a1a2...an в виде суммы разрядных слагаемых: c=a1b1+a2b2+...+an1bn1+anbn.
 
Из этой записи видно, что целая часть числа bc=a1,a2...an дает первую цифру после запятой в указанном представлении числа \(c\). Выделив в \(bc\) дробную часть, поступим с ней точно так же   умножим на \(b\). Таким образом мы получим еще одну цифру — a2. И так далее. Вот пример перевода десятичной дроби \(0,36\) в пятеричную систему:
 
4.png
 
Ответ: 0,145.
 
А теперь попытаемся перевести ту же дробь в семеричную систему счисления:
 
1.png
 
Обратите внимание: после четвертого умножения мы снова получили дробь \(0,36\). Это значит, что далыпе процесс будет повторяться и никогда не закончится! Тем самым после перевода числа \(0,36\) в семеричную систему счисления получается бесконечная периодическая дробь: 0,23432343...70,(2343)7. При переводе конечной b-ичной дроби в десятичную систему тоже может получиться бесконечная дробь. К примеру, запись 0,13 представляет одну треть и, следовательно, в десятичной системе будет выглядеть как бесконечная десятичная дробь 0,33333...=0,(3).
Как вы знаете, бесконечные дроби нередко округляют, оставляя такое количество разрядов, которое обеспечивает необходимую точность.
Напомним, что в десятичной системе правило округления таково: если цифра в разряде, с которого производится округление, меньше \(5\), то цифра в предшествующем разряде не меняется, в противном случае она увеличивается на \(1\).
Для b-ичной дроби правило нужно модифицировать: если цифра в разряде, с которого производится округление, меньше \(b/2\), то цифра в предшествующем разряде не меняется, в противном случае она увеличивается на \(1\).
Например, дробь 0,23432343...7 при округлении до третьего разряда после запятой дает 0,2347, а при округлении до шестого разряда после запятой даёт 0,2343247.
Источники:
Гейн А. Г., Ливчак А. Б., Сенокосов А. И. Информатика и ИКТ.  11 класс. М. : Просвещение, 56 с.