Теория:

Рассмотрим понятие степени с нулевым показателем.

Если $a\ne 0$, то ${a}^{0}=1$.
Любое число в нулевой степени равно единице.
$\begin{array}{l}1{7}^{0}=1;\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}{\left(-8\right)}^{0}=1;\\ \\ {\left(\frac{3}{4}\right)}^{0}=1;\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}{\left({23}^{2}\right)}^{0}=1.\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\phantom{\rule{0.147em}{0ex}}\\ \end{array}$

Пример:
упростить.
${\left({\left({\left(-\frac{2}{7}{u}^{8}{p}^{3}s\right)}^{4}\right)}^{5}\right)}^{0}$.
Решение.
${\left({\left({\left(-\frac{2}{7}{u}^{8}{p}^{3}s\right)}^{4}\right)}^{5}\right)}^{0}=1$.

Обрати внимание!
Символ ${0}^{0}$ не имеет смысла.