Теория:
Векторное и скалярное уравнения скорости материальной точки при движении вертикально вверх

Рис. \(1\). Движение тела, брошенного вертикально вверх
1) Общий вид:
- векторное уравнение — \(\vec{v}\) \(=\) \(\vec{v}(t)\) \(=\) \(\vec{v}{_0}\) \(+\) \(\vec{a}(t - t_0)\);
- числовые (скалярные) уравнения — \(v_x(t)\) \(=\) \(v_{0x}\) \(+\) \(a_x(t - t_0)\), \(v_y(t)\) \(=\) \(v_{0y}\) \(+\) \(a_y(t - t_0)\), \(v_z(t)\) \(=\) \(v_{0z}\) \(+\) \(a_z(t - t_0)\).
2) Движение тела, брошенного вертикально вверх:
- векторное уравнение — \(\vec{v}(t)\) \(=\) \(\vec{v}{_0}\) \(+\) \(\vec{g}(t - t_0)\),
где \(\vec{v}{_0}\) — скорость тела в начальный момент времени \({t_0}\), \(\vec{v}(t)\) — скорость тела в произвольный момент времени \(t\);
- числовые (скалярные) уравнения — \(v_x(t)\) \(=\) \(v_{0x}\) \(+\) \(g_x(t - t_0)\),
\(v_y(t)\) \(=\) \(v_{0y}\) \(+\) \(g_y(t - t_0)\), \(v_z(t)\) \(=\) \(v_{0z}\) \(+\) \(g_z(t - t_0)\);
- модуль скорости: .
Если ось \(OX\) направлена горизонтально, а ось \(OY\) — вертикально вверх (рис. \(1\)), то: \(v_x(t)\) \(=\) \(v_{0x}\) \(=\) \(0\),
\(v_y(t)\) \(=\) \(v_{0}\) \(-\) \(g(t - t_0)\).
Векторное и скалярное уравнения движения материальной точки при движении вертикально вверх
1) Общий вид:
- векторное уравнение — \(\vec{r}\) \(=\) \(\vec{r}{_0}\) \(+\) \(\vec{v_0}\) \({(t - t_0)}\) \(+\) \(\frac{\vec{a}(t - t_0)^2}{2}\);
- числовые (скалярные) уравнения — \(x(t)\) \(=\) \({x_0}\) \(+\) \(v_{0x}\)\({(t - t_0)}\) \(+\) \(\frac{a_x (t - t_0)^2}{2}\),
\(y(t)\) \(=\) \({y_0}\) \(+\) \(v_{0y}\)\({(t - t_0)}\) \(+\) \(\frac{a_y (t - t_0)^2}{2}\), \(z(t)\) \(=\) \({z_0}\) \(+\) \(v_{0z}\)\({(t - t_0)}\) \(+\) \(\frac{a_z (t - t_0)^2}{2}\).
2) Движение тела, брошенного вертикально вверх:
- векторное уравнение — \(\vec{r}(t)\) \(=\) \(\vec{r}{_0}\) \(+\) \(\vec{v_0}\) \({(t - t_0)}\) \(+\) \(\frac{\vec{g}(t - t_0)^2}{2}\),
где \(\vec{r}{_0}\) — радиус-вектор исследуемой точки в начальный момент времени \({t_0}\), \(\vec{r}(t)\) — радиус-вектор исследуемой точки в произвольный момент времени \(t\);
- числовые (скалярные) уравнения — \(x(t)\) \(=\) \({x_0}\) \(+\) \(v_{0x}\)\({(t - t_0)}\) \(+\) \(\frac{g_x (t - t_0)^2}{2}\),
\(y(t)\) \(=\) \({y_0}\) \(+\) \(v_{0y}\)\({(t - t_0)}\) \(+\) \(\frac{g_y (t - t_0)^2}{2}\), \(z(t)\) \(=\) \({z_0}\) \(+\) \(v_{0z}\)\({(t - t_0)}\) \(+\) \(\frac{g_z (t - t_0)^2}{2}\);
- уравнения координат для модулей физических величин (ось \(OX\) направлена горизонтально, а ось \(OY\) — вертикально вверх):
\(x(t)\) \(=\) \(0\), \(y(t)\) \(=\) \({y_0}\) \(+\) \(v_{0}\)\({(t - t_0)}\) \(-\) \(\frac{g(t - t_0)^2}{2}\).
Источники:
Рис. 1. Движение тела, брошенного вертикально вверх. © ЯКласс.