Теория:

Как мы уже заметили, построение информационной модели задача плохо формализуемая. Но тут исследователи разных моделей могут помочь друг другу, поделившись своим опытом. Как писал русский академик А.Н. Крылов, тот самый, под руководством которого работал Опытовый бассейн в Новой Голландии: «Казалось бы, что может быть общего между расчётом движения небесных светил... и качкой корабля. Между тем, если написать только формулу и уравнения без слов, то нельзя отличить, какой из этих вопросов решается: уравнения одни и те же». И это наблюдение касается не только математических моделей.
Если исследователю удастся классифицировать свою будущую модель, то можно воспользоваться идеями для создания подобных моделей.
Классификация по способу применения:
 
Скриншот 27-12-2021 222726.jpg
 
Классификация по отрасли знания:
 
Скриншот 27-12-2021 223057.jpg
 
Классификация по учёту фактора времени:
 
Скриншот 27-12-2021 223513.jpg
 
Классификация по способу представления объекта:
 
Скриншот 27-12-2021 223529.jpg
 
На этом классификация моделей не заканчивается. Провести классификацию моделей можно по любому существенному признаку и предыдущие классификации служат этому примером. Например, знаковые информационные модели могут быть представлены в виде рисунка, таблицы, графа или схемы.
Оценим характеристику моделей, приведенных нами в качестве примера: памятник Петру I и фрагмент стихотворения «Полтава» А.С. Пушкина. Но прежде определим цель моделирования. Пусть эти модели нам необходимы для проведения урока истории.
 
Признак классификации
monument-3396697_1280.jpg
Рис. \(1\). Медный всадник
«За дело, с богом!» Из шатра,
Толпой любимцев окружённый,
Выходит Пётр. Его глаза
Сияют. Лик его ужасен.
Движенья быстры. Он прекрасен,
Он весь, как божия гроза.
по способу применения
учебная
учебная
по отрасли знания
историческая
историческая
по учёту фактора времени
статическая
статическая
по способу представления объекта
материальная
информационная, вербальная
 
Умение исследователя строить адекватные модели объектов, процессов и явлений — результат широкого кругозора, опыта и глубоких знаний. Так, например, алгоритм поиска кратчайшего пути в графе, предложенный кибернетиком Дейкстрой, применяется во многих отраслях науки и в практической деятельности человека.
Пример 1
Между населёнными пунктами A, B, C, D, E, F, Z построены дороги, протяжённость которых приведена в таблице. (Отсутствие числа в таблице означает, что прямой дороги между пунктами нет.)
 
Скриншот 27-12-2021 224600.jpg
 
Определите длину кратчайшего пути между пунктами A и Z (при условии, что передвигаться можно только по построенным дорогам).

Решение.

Составим маршрут следующим образом: стартуя из пункта А, будем всегда выбирать кратчайший путь к следующему пункту.
A-B (\(2\)). Это кратчайший путь, так как остальные дороги к B через другие пункт длиннее.
A-B-C (\(2+2=4\)) это кратчайший путь, сравни A-C (\(5\)).
Из C можно попасть в Z: A-B-C-Z (\(4+7=11\)).
 
A-B-D-E-Z\(2+1+2+8=13\)
A-B-C-Z\(2+2+7=11\)
A-C-Z\(5+7=12\)
A-D-E-Z\(7+2+8=17\)
 
Из анализа путей видим, что кратчайшим является путь A-B-C-Z, его длина \(11\) и есть ответ задачи.
Пример 2
На рисунке — схема дорог, связывающих города А, В, Г, Д,  Ж, З,  К. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город К?
 
1212121.png
 
Решение этого задания можно проводить прямо на схеме. Рядом с каждой вершиной подписать сколько путей ведет в эту вершину с учетом предыдущих путей.
 
Скриншот 27-12-2021 230457.jpg
 

Или с помощью таблицы:

 

Куда

Откуда

Сколько 

В

А

\(1\)

Г 

А, В

\(1+1=2\)

Б 

В

\(1\)

Д

Г, Б 

\(2+1=3\)

Ж

Б, В

\(1+1=2\)

З

Б, Ж

\(1+2=3\)

К

Ж, З, Д

\(2+3+3=8\)

 

Пример 3

На рисунке схема дорог изображена в виде графа, в таблице содержатся сведения о длине этих дорог в километрах. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину более длинной из дорог ГЖ и ЕИ. В ответе запишите целое число — длину дороги в километрах.

  

Скриншот 27-12-2021 232101.jpg

 

Решение.


Определим степени вершин на графе. Степенью вершины называется количество рёбер, входящих или выходящих из вершины.

 

А\(7\)
Б\(2\)
В\(2\)
Г\(3\)
Д\(3\)
Е\(3\)
Ж\(2\)
И\(2\)
 
Из рассмотрения таблицы видно, что вершина П1 — это вершина А; вершинами Г, Д, Е могут быть П4, П5, П6, вершинами Б, В, Ж, И вершины П2, П3, П7 и П8.
Вершина Г степенью \(3\) связана с вершинами со степенями \(2\), \(3\) и \(5\);
вершина Д степенью \(3\) связана с вершинами со степенями \(2\), \(2\) и \(5\);
вершина Е степенью \(3\) связана с вершинами со степенями \(2\), \(2\) и \(5\).
Основываясь на этом легко определить вершину Г — это П4, связанная с ней вершина со степенью \(2\) — П7 это Ж, а вершина со степенью \(3\) — П5 это Д. Таким образом, мы узнали, что ГЖ \(=27\). Оставшаяся вершина со степенью \(3\) — П6 это Е. Расстояние от неё до смежных вершин со степенью \(2\) равно \(21\) и \(23\), что меньше \(27\).
Ответ: \(27\).
 
Рассмотренные нами примеры — реализация реальных задач с помощью знаковой информационной модели, представленной в виде графа. Еще одна разновидность графа — дерево, позволяет решать иной круг задач. Это задачи построения иерархии и применяются они в задачах, где важно учитывать наследование признаков.
Пример 3
По каналу связи передаются шифрованные сообщения, использующие только десять букв: А, Б, В, Г, Д, Е, Ж, З, И, К. Для передачи используется неравномерный двоичный код, т.е. длина кода для разных букв может быть неодинаковой. Известны коды первых пяти букв. Они приведены в таблице.
 
А
Б
В
Г
Д
\(0\)
\(100\)
\(101\)
\(1100\)
\(1110\)
 
Определите минимально возможную сумму длин кодов всех букв шифра.

Решение.
 
Для решения этой задачи составляют дерево кодов. Для однозначного декодирования никакой из кодов не должен начинаться другим кодом. Это условие сформулировал итальяно-американский учёный в области информатики Роберт Марио Фано. Построим и прокомментируем дерево кодов.
 
Скриншот 27-12-2021 233119.jpg
 
Буква А кодируется кодом \(0\), значит все коды, которые могли начинаться с этой цифры не удовлетворяют условию однозначного декодирования. На схеме это помечено знаком запрета. Так же никакие коды нельзя начинать с \(100\), \(101\), \(1100\) и \(1110\). Не заблокированы коды \(1101\) и \(1111\), но из них совокупно получится только \(4\) кода, нам же, по условию задачи, нужно составить \(5\) кодов. Поэтому один из оставшихся кодов используем для создания еще двух кодов длиной в \(6\) цифр. Например так, как показано на схеме.
Считаем суммарную длину всех кодов: А — \(1\); Б, В по \(3\), Г, Д по \(4\), три кода по \(5\) и два кода по \(6\).
\(1+2×3+2×4+3×5+2×6=1+6+8+15+12=42\).
Ответ: \(42\).

Этот тип решения можно применять и в том случае, когда коды состоят более чем из двух символов. Тогда дерево не будет называться двоичным как в предыдущем примере, но знаковая графическая модель не изменится.
Во многих реальных задачах информационная модель представляется в табличном виде. И для простоты восприятия её удобно переводить в графическое представление. Диаграммы нагляднее, позволяют сделать качественный вывод из количественных данных.
Пример 4
Ниже приведены фрагменты таблиц базы данных победителей городской олимпиады по информатике за \(2000\) год.
 
Скриншот 27-12-2021 233639.jpg
 
По данным таблицы были построены диаграммы. Определите, какая из диаграмм правильно отражает данные, представленные в таблице.
 
АБ
А_диагр.pngБ_диагр.png
ВГ
В_диагр.png
Г_диагр.png
 
Решение.
 
По данным, приведённым в таблице видно, что количество участников олимпиады, использовавших Python и Basic равно, а участников, использовавших C++ меньше. Две равные величины мы видим на диаграммах А и В, но на диаграмме В третья категория, подразумевается C++, имеет большее значение, значит правильный ответ этой задачи диаграмма А.
Ответ: А.

Примечание: диаграмму В вообще стоит исключить из рассмотрения, потому что график подразумевает наличие промежуточных значений, т.е. непрерывной зависимости. В нашем примере зависимость дискретная.
Источники:
Рис. 1. Медный всадник. https://pixabay.com/images/id-3396697/
Изображения © ЯКласс.