Теория:

Алгоритм перевода дробного числа из десятичной системы счисления в любую другую
1. Целую часть числа переводим по алгоритму перевода целых чисел из десятичной системы счисления в любую другую систему счисления.
Делим число на основание системы счисления, в которую необходимо перевести, при этом записывая в обратном порядке остатки, из которых складывается искомое число.
2. Дробную часть числа умножаем последовательно на основание системы счисления, в которую необходимо перевести. Умножаем до тех пор, пока не получим ноль в целой части или пока не получим нужное число разрядов по условию задания. Из целых частей получившихся произведений записываем в прямом порядке искомое число.
Пример:
1. Перевести число \(58,14\) из десятичной системы счисления в двоичную систему счисления.
Следуя алгоритму, переводим сначала целую часть десятичного числа \(58\) в двоичную систему счисления. Делим его последовательно на основание \(2\) искомой системы счисления.  Получаем число \(111010\). Следующим шагом переводим дробную часть \(0,14\) от десятичного числа, отбросив целую часть. Умножаем последовательно число на основание искомой системы счисления — \(2\). Умножаем до тех пор, пока не получим единицу в целой части. Записываем выделенные на схеме числа в прямом порядке и получаем в итоге двоичное число \(111010,001\).
 
1.png
Пример:
2. Перевести число \(58,14\) из десятичной системы счисления в шестнадцатеричную систему счисления.
Следуя алгоритму, переводим сначала целую часть десятичного числа \(58\) в шестнадцатеричную систему счисления. Делим его последовательно на основание \(16\) искомой системы счисления.  Получаем число 3A. Следующим шагом переводим дробную часть \(0,14\) от десятичного числа, отбросив целую часть. Умножаем последовательно дробную часть на основание искомой системы счисления — \(16\). Умножаем до тех пор, пока не получим ноль в целой части. Записываем выделенные на схеме числа в прямом порядке и получаем в итоге шестнадцатеричное число \(3A,23D7\).
 
2.png