Теория:

Познакомимся с основными логическими операциями, которые можно выполнять над высказываниями. Они соответствуют связкам, употребляемым в нашей речи. Простые высказывания состоят из одной законченной мысли, а составные из нескольких, для их связи и используются логические операции.
Конъюнкция
Конъюнкция (логическое умножение) — логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.
Для записи конъюнкции используются следующие знаки: И,ˆ,,&.
Например: A И B,AˆB,AB,A&B.
Конъюнкцию можно описать в виде таблицы, которую называют таблицей истинности:

1_!.png
 
В таблице истинности перечисляются все возможные значения исходных высказываний (столбцы \(A\) и \(B\)), причём соответствующие им двоичные числа, как правило, располагают в порядке возрастания: \(00, 01, 10, 11\). В последнем столбце записан результат выполнения логической операции для соответствующих операндов.
 
Пример: 
\(A\) = «Джордж Буль создал новую область науки — математическую логику»,
\(B\) = «Клод Шеннон связал математическую логику с работой компьютера».
Построим сложное высказывание A И B: «Джордж Буль создал новую область науки — математическую логику, и Клод Шеннон связал математическую логику с работой компьютера» истинно только в том случае, когда одновременно истинны оба исходных высказывания.
Дизъюнкция
Рассмотрим два высказывания:
\(A\) = «Идея использования в логике математической символики принадлежит Готфриду Вильгельму Лейбницу»,
\(B\) = «Лейбниц является основоположником бинарной арифметики».
Очевидно, новое высказывание «Идея использования в логике математической символики принадлежит Готфриду Вильгельму Лейбницу или Лейбниц является основоположником бинарной арифметики» ложно только в том случае, когда одновременно ложны оба исходных высказывания.
Дизъюнкция — логическая операция, которая каждым двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.
Для записи дизъюнкции используются следующие знаки: ИЛИ;;|;+.
Например: A ИЛИ B;AB;A|B;A+B.
Дизъюнкция определяется следующей таблицей истинности:

1_2.png
 
Обрати внимание!
Дизъюнкцию также называют логическим сложением.
Инверсия
Инверсия — логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному.
Для записи инверсии используются следующие знаки: НЕ;¬;
Например: НЕ А;¬А;А.
Инверсия определяется следующей таблицей истинности:
 
1_3.png

 
Обрати внимание!
Инверсию также называют логическим отрицанием.
Отрицанием высказывания «У меня дома есть компьютер» будет высказывание «Неверно, что у меня дома есть компьютер» или, что в русском языке то же самое, что «У меня дома нет компьютера».
Отрицанием высказывания «Я не знаю китайский язык» будет высказывание «Неверно, что я не знаю китайский язык» или, что в русском языке: «Я знаю китайский язык».
Отрицанием высказывания «Все юноши \(8-х\) классов — отличники» является высказывание «Неверно, что все юноши \(8-х\) классов — отличники», другими словами, «Не все юноши \(8-х\) классов — отличники».

Таким образом, при построении отрицания к простому высказыванию либо используется речевой оборот «неверно, что ...», либо отрицание строится к сказуемому, тогда к соответствующему глаголу добавляется частица «не».
 
Каждое сложное высказывание можно записать в виде логического выражения, которое содержит логические переменные, операции, скобки.
 
Последовательность выполнения логических операций:
  1. Инверсия;
  2. Конъюнкция;
  3. Дизъюнкция.
Если в выражении присутствуют скобки, то приоритет операций меняется, сначала выполняются действия в скобках.