Теория:
Выполним деление многозначного числа на двузначное число с остатком.
Разделим \(15273\) на \(64\):
\(1\) дес. тыс. на \(64\) не делится, добавляем \(5\) тыс., вместе получаем \(15\) тыс.
\(15\) тыс. на \(64\) не делятся, добавляем \(2\) сот., вместе получаем \(152\) сот.
Делим сотни: \(152\) сот. делим на \(64\), получаем \(2\) сот. в частном и \(24\) сот. в остатке.
Добавляем к \(24\) сот. \(7\) дес., получаем \(247\) дес.
Делим десятки: \(247\) дес. при делении на \(64\) дают \(3\) дес. в частном и \(55\) дес. в остатке. Добавляем к \(55\) дес. \(3\) ед., получаем \(553\) ед.
Делим единицы: \(553\) ед. разделим на \(64\), получим \(8\) ед. в частном и \(41\) ед. в остатке:
Выполним проверку: \(238 · 64 + 41 = 15273\).
Действительно,
Таким образом, \(15273 : 64 = 238\) (ост. \(41\))
(\(41 < 64\)).
Обрати внимание!
Остаток всегда меньше делителя!